这已经不知道是我第多少次搭MNIST了,但感觉每次写这个Hello World都会学到一写新的东西。
这次写这个主要是为了学习一下TensorFlow自带的TensorBoard功能,不知道是以前自己太蠢还是怎么回事,一直玩不转TensorBoard的可视化。
这次上手试了试r1.11的版本,发现真的很简单就可以实现了,而且语法也优雅的。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, n_layer, activation_function=None): layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_scope('weights'): Weights = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.1), name="W") tf.summary.histogram(layer_name + '/weights', Weights) with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name="b") tf.summary.histogram(layer_name + '/biases', biases) with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, Weights) + biases outputs = tf.nn.dropout(Wx_plus_b, 0.75) if activation_function: outputs = activation_function(Wx_plus_b) tf.summary.histogram(layer_name + '/outputs', outputs) return outputs def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 784]) # 28x28 ys = tf.placeholder(tf.float32, [None, 10]) layer_1 = add_layer(xs, 784, 60, n_layer=1, activation_function=tf.nn.relu) prediction = add_layer(layer_1, 60, 10, n_layer=2, activation_function=tf.nn.softmax) # Loss with tf.name_scope('loss'): cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) tf.summary.scalar('loss', cross_entropy) # Train with tf.name_scope('Train'): train_step = tf.train.GradientDescentOptimizer(0.4).minimize(cross_entropy) # Establish Session sess = tf.Session() merged = tf.summary.merge_all() writer = tf.summary.FileWriter("logs/", sess.graph) init = tf.global_variables_initializer() sess.run(init) sess.run(tf.global_variables_initializer()) for i in range(3000): # training batch_xs, batch_ys = mnist.train.next_batch(600) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy(mnist.test.images, mnist.test.labels))
代码也可以在Github上面找到。
希望自己可以努力进步,争取实现自己的理想。